Contents

EURAXESS Members in Focus: Croatia..........................2

Croatian S&T funding agencies2
Croatian Research & Innovation institutions3
Study in Croatia ...4

Important information for incoming researchers: EURAXESS Croatia5

Hot topic: Status update of gender equality in research careers in Europe ...6

Global overview ...6
The ‘leaky pipeline’ and its evolution over time7
Very slow improvement in STEM fields9
Gender gap in international mobility of researchers10
Gender pay gap in research careers11
Gender equality policies and gender distribution in Marie Sklodowska-Curie Actions ..12
Gender equality policies and gender distribution in European Research Council grants14

Meet the coordinators and participants of Europe-Japan MSCA-ITN project REP-BIOTECH17

Interview of REP-BIOTECH coordinators17
Interview of REP-BIOTECH participants19

EURAXESS Japan Activities Update22

European Research Nights #5: Research Collaboration A to Z, 22 April ..22
Advance your career with a full week of events from 10 June to 13 June ..22
European Research Nights #6: You the researcher, the evaluator, the decision-maker, 10 June22
Grants In Practice 2019, 11-12 June23
Scientific Communication In Practice 2019, 13 June23
Falling Walls Lab Tokyo, 13 June23

Sign up here to become a member of the EURAXESS Japan community (more than 3300 members!).

Web: japan.euraxess.org
Mail: japan@euraxess.net
Twitter: @euraxess_japan
YouTube: EURAXESS Japan

Editor: Matthieu Py
EURAXESS Japan

The information contained in this publication is intended for personal use only. It should not be taken in any way to reflect the views of the European Commission nor the Delegation of the European Union to Japan.
Croatia is situated in South East Europe, at the crossroads of Central Europe and the Mediterranean, neighbouring five countries on land border: Bosnia and Herzegovina, Slovenia, Hungary, Serbia, and Montenegro. The Croatian Adriatic coastline is one of the most indented coastlines in Europe, next to the Norwegian fjords.

The International Monetary Fund classified Croatia as an open and developing economy and the World Bank defined it as a high-income economy.

Croatian S&T funding agencies

Scientific research in Croatia is monitored and conducted in six fields of science: natural sciences, technical, biomedical, biotechnical and social sciences, and humanities. The entire system of science and technology is financed through direct project financing with a mechanism of annual monitoring of results, through financing of junior researchers on concrete projects, with multi-year monitoring of their progress and financing of equipment.

The main funding bodies, in addition to the Ministry of Science and Education (MSE), are the Croatian Science Foundation (CSF) and the Croatian Agency for SMEs, Innovations and Investments (HAMAG-BICRO). Through the Regional Competitiveness Operational Programme and Operational Programme Human Resources Development, Croatia is combining European Regional Development Fund (ERDF) and European Social Fund (ESF) for funding development of science and research.

Croatian Science Foundation (CSF)

Croatian Science Foundation was established by the Croatian Parliament in December 2001 under the name The National Foundation for Science, Higher Education and Technological Development of the Republic of Croatia. Its mission is to promote science, higher education and technological development in Croatia in order to ensure the economic development and to support employment. The Foundation
provides support to scientific, higher education and technological programmes and projects, fosters international cooperation, and supports the realization of scientific programmes of special interest in the field of fundamental, applied and developmental research.

Croatian Agency for SMEs, Innovations and Investments (HAMAG-BICRO)

HAMAG-BICRO is the Croatian Agency for SMEs, Innovation and Investments established by the Government of the Republic of Croatia with the purpose of enhancing SME development and promoting investment and innovation. The Agency is an independent institution under the supervision of the Ministry of Entrepreneurship and Crafts.

Croatian Research & Innovation institutions

The Croatian research and innovation system has evolved over the last decade into a complex system of various institutions and measures directed to build innovation-driven growth. The basic principles and guidelines of science and higher education policy are determined by the Croatian Parliament. The **Ministry of Science and Education (MSE)** is the main administrative body responsible for planning, funding and monitoring of the entire science and education system while the highest advisory body for the scientific research system is the **National Council of Science, Higher Education and Technological Development** with the aim to harmonize the overall development of the R&D and innovation system. The **Ministry of Economy, Entrepreneurship and Crafts** complements the national innovation policy related to innovation-based entrepreneurship and business infrastructure. The role of the **Ministry of Regional Development and European Funds** has increased upon the Croatian accession to EU. Scientific activity in Croatia is performed at the universities, public research institutes, research institutes, Croatian Academy of Sciences and Arts and other legal persons duly registered in the Register of Scientific Organisations.

Investment in R&D and employment in Science and Technology

The Croatian science and technology sector employed 38.2% of the active population (aged 25-64) in 2016 according to the Eurostat report which is close to the EU-28 average (46%). The public R&D sector, with universities playing a leading role, is the largely dominant sector research manpower (56.5% of total researchers HEI in 2016). As reported by Eurostat in 2016, the business sector employs a modest 21% of total researchers and invests 0.44 percent of GDP in R&D. On the other hand, the business enterprises sector is leading in R&D
performing activities (49.4%), followed by the higher education sector (31%). Furthermore, the total investment into R&D was 0.85% of the GDP in 2016 and has been fluctuating around 1% in the past 10 years, marking Croatia as one of the most advanced R&D performers in the region, but not at the EU level. However, according to ERAWATCH, Economic Programme of Croatia envisaged increasing the investment in research and development to achieve a share of GERD of 1.4% of the GDP by 2020 in order to overcome the gap in science funding between Croatia and the EU countries (0.85% of GDP vs. 2.03% of GDP in 2016).

Ruđer Bošković Institute

The Ruđer Bošković Institute is regarded as Croatia’s leading scientific institute in the natural and biomedical sciences as well as marine and environmental research, owing to its size, scientific productivity, international reputation in research, and the quality of its scientific personnel and research facilities. The Institute is the leading and internationally most competitive Croatian institute by virtue of its participation in international research projects.

Croatian Academy of Science and Arts

The Academy promotes and organizes scientific research and encourages the application of the findings of this research, develops artistic and cultural activities, and is concerned with Croatian cultural heritage and its affirmation throughout the world. It publishes the results of scientific research and artistic creation and makes proposals and gives its opinion on the promotion of sciences and arts in the fields which are of special importance to the Republic of Croatia.

Study in Croatia

The portal “Study in Croatia” (www.studyincroatia.hr) is owned and managed by the Croatian Agency for Mobility and EU Programmes. It contains information about higher education in Croatia aimed at prospective international students. You can find an overview of the Croatian higher education system, practical information about application procedures, student life, visas and accommodation and scholarships. Furthermore, the portal provides information on learning Croatian as a foreign language, as well as general information about Croatia. More information can be found at: http://www.studyincroatia.hr/
Important information for incoming researchers: EURAXESS Croatia

The Agency for Mobility and European Union Programmes is coordinator (Bridgehead Organization) of the EURAXESS programme in Croatia as well as a EURAXESS Service Centre. The EURAXESS Service Centre (ESC) assists researchers and their families during their period of mobility, in all matters relating to their professional and daily lives, helping them to reach adequate services for their needs, as well as assists the core contact points in research institutions and informs a wider group of contact points about matters of interest to mobility. For all required information, incoming researchers should contact Croatian EURAXESS Service Centre, or check our website (https://www.euraxess.hr/).
Hot topic: Status update of gender equality in research careers in Europe

The ‘She Figures’ publication provides a range of indicators on gender equality in research and innovation at pan-European level. It aims to give an overview of the gender equality situation, using a wide range of indicators to examine the impact and effectiveness of policies implemented in this area. At the occasion of the publication of the latest edition in March 2019, we investigate the evolution of the situation of gender equality in Europe and in EU programmes for researcher mobility ERC and MSCA. Large parts of this article are directly sourced from the final ‘She Figures 2018’ report.

Global overview

The EU is approaching gender balance among doctoral students. Overall, in 2016, women made up 47.9 % of doctoral graduates at the EU level, in two thirds of EU Member States the proportion of women among doctoral graduates ranged between 45 % and 55 %. While the overall number of both women and men doctoral graduates increased between 2007 and 2016, in most of the countries that ‘She Figures’ covered, the number of women doctoral graduates increased at a faster rate than that for men. The proportion of women among doctoral graduates still varies among the different fields of education; in 2016, women doctoral graduates at EU level were over-represented in education (68 %), but under-represented in the field of information and communication technologies (21 %) and the fields of engineering and manufacturing and construction (29 %).

Differences between women and men can also be observed in their working conditions as researchers. At the EU level, the proportion of women researchers working part-time was higher than that of men; 13 % of women researchers and 8 % of men researchers were working part-time in 2016. Furthermore, 8.1 % of women and 5.2 % of men researchers worked under contract arrangements considered as ‘precarious employment’. In terms of equal payment, there is still a considerable gender pay gap in scientific R&D occupations. Across the EU-28, women in R&D earned on average 17 % less than their male colleagues in 2014, and the gender pay gap was found to widen with age. Moreover, the presence of women researchers seems to have an inverse relationship with the R&D expenditure per researcher; most of the countries that spent more per researcher had some of the lowest shares of women researchers.

In the EU-28, women were still under-represented in the writing of scientific papers. Between 2013 and 2017, the ratio of women to men among authors of scientific publications in the EU was on average one to two. However, this ratio is slowly improving and it has been increasing by almost 4 % per year since

Q1 2019 | Issue 13 | Page 6 of 24

http://ec.europa.eu/euraxess
2008. The highest women to men ratio of authorship was observed in the fields of medical and agricultural sciences, where a little over 8 women authors corresponded to 10 men authors. Moreover, women are still strongly under-represented among patent inventors; between 2013 and 2017 in the EU, the women to men ratio of patent inventors was on average just over 1 to 3. A strong gender gap in the composition of the inventors’ teams was also observed in the EU-28, where the most frequent composition of the teams was all men (47 %), followed by those with just one male inventor (33%). A final overall observation for EU countries was a slight gender gap in receiving research grants. The funding success rate was higher for men team leaders than women team leaders by 3.0 percentage points.

The ‘leaky pipeline’ and its evolution over time

The fact that women tend to be less and less represented within researcher population with age (or experience, career level) is often referred to as the ‘leaky pipeline’. Indeed, as shown in Figure 1, women are on average over-represented up to the tertiary education level, but start being under-represented at the higher education level: there are less women university graduates (all levels including PhD) than men; and the tendency worsens after the post-doctoral phase.

![Proportion (%) of men and women in a typical academic career, students and academic staff, EU-28, 1999-2016](Source: She Figures 2018 and 2015)
Women in the EU were the majority of students and graduates at Bachelor’s and Master’s or equivalent levels in 2016. In fact, their share among graduates (58 %) was higher than that among students (54 %), pointing to the better performance of women rather than men in their studies. Conversely, women start to be under-represented as of the Doctoral stage (48 %), and while the same proportion is observed among PhD degree holders, numbers plunge as of the postdoctoral stage (46 %), down to 40 % at mid-career level and as low as 24% at senior level.

Research identifies institutional and field-related research cultures that favour the advancement of men. Some of the issues stopping women’s advancement to top decision-making roles include women’s lower success rates in securing prestigious grants and the preponderance of part-time and short-term contract research positions among women’s careers. In addition, implicit gender bias in performance assessment, gender stereotypes, gendered perceptions of leadership and leadership styles, the ‘glass ceiling’, and the ‘gender pay gap’ are among the factors that can influence the recruitment and promotion of women to senior grade positions, evaluation committees and university oversight bodies and scientific committees responsible for research funding.

The proportion of women among senior staff at the national level ranges from 13 % to 54.3 %. The proportion is 40 % or higher in just 5 countries. The largest proportions of women were observed in Romania (54.3 %), Bosnia and Herzegovina (45.1 %) and Latvia (41.4 %) while the smallest proportions were in Cyprus (13 %), Israel (14.3 %) and Czechia (14.6 %).

![Figure 2. Percentage points gained in closing the gender gap at all career levels in EU-28, between 1999 and 2016](http://ec.europa.eu/euraxess)
The share of women among all academic staff, irrespective of career level, in the EU, was 41.3 %, while at national level it ranged from 34.4 % to 57.4 %. The largest proportions of women were observed in Lithuania (57.4 %), Latvia (55.8 %) and Romania (54.6 %), while the smallest ones were found in Czechia (34.4 %), Greece (35.1 %) and France (36.5 %).

Still, there is a notable positive evolution of the gender gap in research careers, as displayed in Figure 2. While the number of women university students in the EU-28 (pre-doctoral) has stagnated or only slightly evolved between 1999 and 2016 (with a peak in 2003), all career levels from PhD degree holders to senior level have seen an evolution of 10 points on average over the same period.

This evolution represents an annual progression of 0.6 percentage points at the PhD degree holders level, 0.5 at the post-doctoral level, 0.6 at the mid-career level and 0.65 at the senior level; which, assuming similar rates in years to come would only allow to totally remove the remaining gender gap in:

- mid-2019 at the PhD degree holder level (2 percentage points progression needed to reach 50%);
- 2024 at the postdoctoral level (4 points needed);
- mid-2032 at the mid-career level (10 points needed);
- 2056 at the senior level (26 points needed).

Very slow improvement in STEM fields

The share of women is considerably smaller in natural sciences, technology, engineering and mathematics (STEM) than over all fields of research across the career path. This affects all tertiary education levels and all the three higher career grades. More specifically, as shown in Figure 3, in the EU in 2016, women were 32 % of students and 36 % of graduates in STEM at the university graduates level. These proportions are 23 percentage points lower than the respective ones over all fields of education. At doctorate level, women were 37 % of students and 39 % of graduates in STEM, eleven and nine percentage points respectively below their corresponding shares over all fields.

The same picture of a wider gap between women and men...
emerges among academic staff, where women were 35 % of postdoctoral staff, 28 % of mid-career researchers and only 15 % at senior level. The situation has nonetheless improved slightly since 2013, when the respective shares were 34 %, 26 % and 14 %.

Gender gap in international mobility of researchers

Figure 4 explores the sex differences in the mobility of researchers at advanced stages in their careers (from post-doctoral to senior career levels). It presents the difference between the proportions of women and men researchers who reported that they have worked for at least three months in the last decade in a country other than the one where they attained their highest educational degree. A positive result indicates that men’s rate of mobility is higher, whilst a negative result shows that women’s rate is higher. The difference between the mobility of women researchers and men researchers in the EU in 2016 was 3.6 percentage points in favour of men (25.1 % mobility for women and 28.7 % for men). It is worth noting that this difference has decreased since 2012 when it was 9 percentage points. The largest differences in mobility between women and men researchers in favour of men for 2016 were found in Ireland with 11.1 percentage points, Slovakia with 10.9 percentage points and Poland with 10.4 percentage points.
Gender pay gap in research careers

At the EU level, 13.0 % of women researchers and 8.0 % of men researchers in the higher education sector were working part-time in 2016. In most of the countries considered, the proportion of women researchers working part-time was higher than that of men. Women researchers in the higher education sector were also more likely than men to be employed under precarious working contracts with the respective shares in the EU being 8.1 % and 5.2 %. This pattern was found in two thirds of the countries examined. This partly contributed to the fact that women employed in scientific R&D activities earned on average 17 % less than their male colleagues in 2014, but overall the gender pay gap widens with age.

The gender pay gap for scientific R&D activities and the total economy in 2014, broken down in four age categories (younger than 35; 35 to 44 years old; 45 to 54 years old; 55 years old and older), is presented in Table 1. The relative gender pay gap in total economy follows the same pattern with age as that in R&D.

On average at the EU level, the gender pay gap is even actually almost similar to that of the total economy, at about 10 % in early careers, 15 % to 20 % mid-career, to 21 % at senior level. However, considerable discrepancy is shown between countries; with for example a considerable gender pay gap in all age categories in Czechia (18 %, 41 %, 24 % and 27 % respectively) or a reversed situation in Romania, women ther being paid more than men in R&D with a -18 %, -4 %, -7 % and -5 % gender gap in favour of women, while such a tendency is not visible in Romania’s total economy. Another interesting example is that of Lithuania, where young to mid-career women are sensibly paid more than their counterparts (-28 % and -15 % gap), while at later career stages they are paid much less (32 % and 43 %).

This two-stage tendency is not seen in other countries, and also does not show correlation to the gender pay gap evolution in Lithuania’s total economy, potentially pointing at a phenomenon characteristic of careers in R&D.

Table 1. Gender pay gap in % in the EU-28 and Associated Countries in 2014. Left panel: economic activity ‘Scientific R&D’, per age category; right panel: total economy, per age category. A positive value points to women being paid less than men, a negative one the reverse.

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific research and development (NACE rev.2, division 72)</th>
<th>Total economy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><35</td>
<td>35–44</td>
</tr>
<tr>
<td>EU-28</td>
<td>9.2</td>
<td>15.0</td>
</tr>
<tr>
<td>BE</td>
<td>0.0</td>
<td>9.4</td>
</tr>
<tr>
<td>BG</td>
<td>3.7</td>
<td>12.2</td>
</tr>
<tr>
<td>CZ</td>
<td>18.3</td>
<td>40.7</td>
</tr>
<tr>
<td>DK</td>
<td>10.9</td>
<td>18.9</td>
</tr>
<tr>
<td>DE</td>
<td>9.3</td>
<td>16.8</td>
</tr>
<tr>
<td>EE</td>
<td>13.7</td>
<td>24.4</td>
</tr>
<tr>
<td>IE</td>
<td>7.0</td>
<td>40.5</td>
</tr>
<tr>
<td>EL</td>
<td>5.0</td>
<td>36.1</td>
</tr>
<tr>
<td>ES</td>
<td>9.6</td>
<td>14.8</td>
</tr>
<tr>
<td>FR</td>
<td>11.4</td>
<td>9.3</td>
</tr>
<tr>
<td>HR</td>
<td>1.8</td>
<td>31.8</td>
</tr>
<tr>
<td>IT</td>
<td>1.5</td>
<td>4.5</td>
</tr>
<tr>
<td>CY</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>LV</td>
<td>16.9</td>
<td>5.6</td>
</tr>
<tr>
<td>LT</td>
<td>-27.7</td>
<td>-15.4</td>
</tr>
<tr>
<td>LU</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>HU</td>
<td>21.6</td>
<td>29.5</td>
</tr>
<tr>
<td>MT</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>NL</td>
<td>17.1</td>
<td>16.1</td>
</tr>
<tr>
<td>AT</td>
<td>11.9</td>
<td>16.7</td>
</tr>
<tr>
<td>PL</td>
<td>13.8</td>
<td>13.0</td>
</tr>
<tr>
<td>PT</td>
<td>15.2</td>
<td>10.1</td>
</tr>
<tr>
<td>RO</td>
<td>-18.1</td>
<td>-4.0</td>
</tr>
<tr>
<td>SI</td>
<td>5.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>SK</td>
<td>11.0</td>
<td>25.0</td>
</tr>
<tr>
<td>FI</td>
<td>14.6</td>
<td>18.1</td>
</tr>
<tr>
<td>SE</td>
<td>12.8</td>
<td>16.2</td>
</tr>
<tr>
<td>UK</td>
<td>1.0</td>
<td>24.6</td>
</tr>
<tr>
<td>IS</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>NO</td>
<td>8.1</td>
<td>14.3</td>
</tr>
<tr>
<td>CH</td>
<td>9.7</td>
<td>16.5</td>
</tr>
<tr>
<td>ME</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>MK</td>
<td>-14.2</td>
<td>-30.8</td>
</tr>
<tr>
<td>RS</td>
<td>1.3</td>
<td>-4.3</td>
</tr>
<tr>
<td>TR</td>
<td>31.6</td>
<td>19.7</td>
</tr>
</tbody>
</table>

Source: She Figures 2018
Gender in Horizon 2020:
Gender equality is a cross-cutting issue in Horizon 2020 and shall be implemented across all areas of Horizon 2020, including the MSCA and ERC. Key objectives include:

- Gender balance in decision-making: The aim is to reach the Commission’s target of 40% of the under-represented sex in each group and panel. For Horizon 2020 Advisory Groups, the target was raised to 50%.

- Gender balance in research teams at all levels: Applicants for funding are encouraged to promote equal opportunities and to ensure a balanced participation of women and men at all levels. Gender balance in teams will also be taken into account when ranking proposals with the same evaluation scores.

- Gender dimension in research and innovation content: Gender is explicitly integrated into several topics across the Horizon 2020 Work Programme, but all H2020 applications should take the gender dimension into account.

Source: European Commission

EURAXESS Japan Quarterly Newsletter

Gender equality policies and gender distribution in Marie Sklodowska-Curie Actions

Since their creation, the MSCA have placed a strong emphasis on promoting gender and equal opportunities for their fellows, and within their projects. Indeed, the MSCA require transparent recruitment and high quality employment and working conditions for researchers, in line with the principles of the European Charter for Researchers and the Code of Conduct for the Recruitment of Researchers. In addition, MSCA grants permit part-time working and parental leave. Post-doctoral researchers who wish to resume their career after a break, for example to raise children, can apply to a dedicated panel of the MSCA Individual Fellowships.

In practice, MSCA features four actions: RISE, which funds exchanges between several research institutions by allowing mobility of students, staff, researchers and professors alike; COFUND, which supports doctoral programmes for PhD candidates, as well as fellowship programmes for experienced researchers; ITN, which funds Doctoral programmes; and IF, which funds individual projects of experienced researchers.

Over the five years of the running Horizon 2020 calls (2014-2018), MSCA supported a total of approximately 25,000 researchers, out of which 40% were women. A breakdown of the ration of men and women per Action is displayed in Figure 5. Although no significant difference can be found in the gender distribution of the COFUND, ITN and IF Actions (respectively with a gender gap of 8.7, 7.5 and 7.2 percentage points), it is shown that the RISE Action displays a larger gender gap with 13.2 percentage points. This can be attributed to the fact that RISE projects involve senior as well as early stage and experienced researchers, whereas other actions only involve early stage- and experienced researchers (defined as pre- and post-doctoral researchers). All of these values are notably higher than the gender gap in EU-28 as shown in Figure 1, since we would only expect between 2014 and 2018 a 3 point gap at the doctoral stage (ITN), 4.5 points at post-doctoral stage (COFUND and IF), and an aggregate of 9.5 points for a mix of senior, mid-career, post-doctoral and doctoral stages (RISE). The gender gap across all MSCA Actions therefore appear to be roughly four to five points above that expected from statistics at the EU level, perhaps pointing to further efforts to be made.

Figure 5. Distribution of men and women across all Actions within MSCA, 2014-2018

http://ec.europa.eu/euraxess
The only programme allowing individual researchers to directly apply for funding (i.e. not via their institution) is MSCA-IF. For this programme we can extract success rates of men and women and analyse their differences, as shown in Figure 6. Although the total number of female applicants over the 2014-2018 period is much lower than the number of male applicants (roughly 17,550 versus 25,750), we can see that their average success rate is higher, resulting in female researchers being better represented after evaluation stage than at proposal submission stage (2,770 versus 3,620).

Figure 6 shows that on average, women are 1.7 percentage points more successful than men at securing MSCA-IF funding. There are strong discrepancies between panels. The career restart panel features the most female-favouring score, with a 4.5 percentage points advantage to women over men, followed by Social Sciences and Physics with 3.2 points; while results in the Economics panel seem skewed towards men, with 3.5 points disadvantage.
Gender equality policies and gender distribution in European Research Council grants

The ERC has seven Working Groups dedicated to the advancement of specific topics, such as open access international participation. One of them is focused on gender balance. Since women and men are equally able to perform excellent frontier research, each process within the ERC – from creating awareness about the ERC to signing of grant agreements – is designed to give equal opportunities to men and women. The purpose of the gender balance working group, launched in 2008, is to monitor these aspects at all stages.

The Working Group on Gender Balance drafted the ERC Gender Equality Plan 2007-2013 and the ERC Gender Equality Plan 2014-2020, endorsed by the ERC Scientific Council, which main objectives are:

- raising awareness about the ERC gender policy among potential applicants;
- working towards improving gender balance among ERC candidates and within ERC-funded research teams;
- identifying and removing any potential gender bias in the ERC evaluation procedures;
- embedding gender awareness within all levels of the ERC processes - while keeping focus on excellence;
- striving for gender balance among the ERC peer reviewers and other relevant ERC bodies.

Figure 7. Men and Women success rates to the ERC’s Stg, Cog and AdG calls, 2007-2017
To achieve these objectives, the working group has been monitoring the evolution of gender balance of ERC funded projects since its inception, the latest available statistics dating from April 2018.

The ERC proposes three main grant categories: the Starting Grants (StG, 2-7 years post PhD obtention), the Consolidator Grants (CoG, 7-14 years –since 2013 only–), and the Advanced Grants (AdG, 10+ year and excellent track record); and features three main evaluation panels: Life Sciences (LS), Physical Sciences and Engineering (PE), and Social Sciences and Humanities (SH). The breakdown of men’s and women’s success rate per type of call and year is displayed in Figure 7. The tendency shown is positive, as while success rates of women were significantly inferior to those of men prior to Horizon 2020 (i.e. until 2013), statistics show that equilibrium is almost reached on average for all the calls within Horizon 2020 (2014-2017). Until 2013 the total success rate was 11 % for men and only 8 % for women (Stg: 10 %- 8%; CoG: 9 %-7 %; AdG: 14 %-12 %), but for the whole period 2014-2017 success rates are equal with 13 % for both men and women (Stg: 13 %-12 %; CoG: 14 %-15 %; AdG: 11 %-11 %).

However, this tendency does not equally apply to all domains of science. Figure 8 shows the differential success rate by panel and call for the Horizon 2020 calls. The Life Sciences panel consistently features lower success rates for women, with a particularly strong imbalance for the StG call (early career researchers) at -4.5 percentage points. On the other hand, the Physical Sciences and Engineering panel shows success rates slightly in favour of women at all career stages; while the Social Sciences and Humanities panel features more balanced statistics.
When it comes to the total number applicants (i.e. irrespective of their success or failure in securing the grant), a positive tendency is also observed as shown in Figure 9. The total share of female applicants steadily grows since 2014, reaching 30 % in 2017 and as high as 37 % for StG only in the same year. The lowest shares of women participation are reached in the AdG (senior level), in agreement with the ‘leaky pipeline’ effect and the statistics at EU level displayed in Figure 1 and 2 (24 % of women at senior level overall, only 15 % in STEM fields in 2016).

Figure 9. Share of female applicants to ERC call, per grant type, 2014-2017

Source: ERC Gender Statistics April 2018
Meet the coordinators and participants of Europe-Japan MSCA-ITN project REP-BIOTECH

Rep-Biotech Joint Doctoral Project is an European Network created to train the new generation of excellent researchers in the Biology and Technology of Reproductive Health. It is a Marie-Sklodowska Curie Innovative Training Network funded by the European Commission under the Horizon 2020 Programme and is composed of 12 leading academic research groups and 3 companies from 9 different countries: Spain, France, Ireland, Italy, Belgium, Germany, USA, Japan and The Netherlands. It started on November 2015 and will end in October 2019.

In this piece we get insights from both the coordinators’ point of view (Prof. Pilar Coy Fuster, University of Murcia, Spain for the European side & Prof. Hiroaki Funahashi, Okayama University for the Japanese side) and the PhD candidates’ point of view (Ms Hashimita Sanyal & Mr Dmitry Nikiforov, who visited Okayama University as part of their PhD programme)

Interview of REP-BIOTECH coordinators

- First of all, congratulations for the success in getting your project, REP-BIOTECH, funded under the 2015 MSCA ITN call. Now that the project is coming to an end (October 2019), can you describe to us what actions were implemented under this project from the European and Japanese side?

Prof. Coy Fuster: REP-BIOTECH network aims to train a new generation of 15 excellent researchers in the field of Biology and Technology of Reproductive Health (both human and animal), gathering the expertise and efforts of 12 leading academic research groups and 3 companies from 9 different countries in Europe, USA and Japan. To fulfil this objective, all the 15 early stage researchers (ESR) are developing projects in at least 3 different institutions and 2 of them have done secondments in Japan. All the projects were designed taking into account the synergies between the different research centers and group leaders and, for this reason, the 2 ESRs trained in Okayama developed projects related with Dr. Funahashi background and current research, taking advantage of his wide knowledge in the field. REP-BIOTECH network has funded the lab, travel and living expenses, as well as the salaries of the ESRs during their stays in Japan and both of them have enjoyed a cultural and scientific experience of the utmost importance in their career and their life.

Prof. Funahashi: As Professor Coy Fuster mentioned, Okayama University has been included in this REP-BIOTECH project from the interview stage for the selection of two ESRs candidates for this program who have done secondments research activities at Okayama University for about three months from last spring.
- How did the idea come to put up with a proposal for an ITN call involving Japanese partners? What would you say is the advantage of this programme, from the European and from the Japanese side?

Prof. Coy Fuster: The idea came from the previous collaboration established between Dr. Funahashi’s laboratory and my own laboratory more than 15 years ago. In 2005, I designed and launched a MSc program in the University of Murcia entitled “Biology and Technology of Reproduction in mammals” and soon after this date, we invited Dr. Funahashi to participate in the teaching of different MSc subjects. Since those days, the exchange of students, teachers and researchers between both laboratories has been continuous, as well as the publication of articles in common and the establishment of an specific agreement between both Universities. Every time a person has visited Okayama University, the experience has been fully satisfactory at the personal, cultural and scientific level. Therefore, when I decided to apply for REP-BIOTECH ITN, I immediately thought that Dr. Funahashi’s lab would be an ideal partner because the quality of the research and hosting was guaranteed. The advantage of this program from both sides is that it allows people involved to know new methods, manners, ideas, ways of thinking, etc. that contribute to their human formation in every aspect.

Prof. Funahashi: A long and active exchange with Murcia University has led to the creation of this project. 10 master students and 7 Professors have been exchanged from Okayama University to University of Murcia under an agreement between the two institutions during the 2006-2019 period; while conversely 15 Master students, 3 PhD students and 7 Professors from University of Murcia were visiting Okayama University. The advantage of the current program is that is does not only allow receiving students, but also discussing with many involved professors and coordinators about doctoral education and research. I also think that it is a great advantage participating students can learn about different cultures and ways of thinking and learn about diversities in knowledge, skills, and approaches.

- In view of potential candidate projects to next year’s upcoming call (expected deadline in January 2020), could you give us a quick feedback on the preparations that were necessary to setup the project, and the hurdles to write the proposal; as well as, from the Japanese side, if you had any plans for matching funds beforehand?

Prof. Coy Fuster: Preparations started several months before the deadline and we didn’t get the project approval the first time we applied, but the second. In general terms, I would say that at least 6 months of preparation are necessary and the coordinator must be focused in the writing of the proposal at least 2 months full time. Hundreds of emails between the different partners are necessary and it is highly advisable that the members of the consortium know each other’s previously because mutual trust is needed.

Prof. Funahashi: We had to put up with significant efforts explaining the project to officers and administrators of our university. At that time, unfortunately I did...
not have any information about the presence of matching funds for our application. If we have future opportunities, I will apply to available matching funds.

- Finally, are there any plans, on both sides, to continue the cooperation? If yes, though which means?

Prof. Coy Fuster: Yes, right now we are working in the preparation of an Erasmus Mundus Master program with 3 European universities and 2 Japanese Universities.

Prof. Funahashi: Yes, we are preparing for EMJMD-IUEP with 3 European universities. We would like to continuously contribute to the exchange of graduate students and researchers between Japan and EU.

Interview of REP-BIOTECH participants

- Hashimita, Dmitry, can you quickly introduce your research interests to our readers?

Hashimita: Currently I’m in the last leg of my PhD (as an MSCA-ITN fellow). During my PhD my primary focus of research has been on Stem Cells. I have been extensively working on Amniotic Epithelial Cells and trying to study their regenerative potential.

Dmitry: My main scientific interest is female fertility preservation, with deeper specialization in ovarian tissue cryopreservation, oocytes in-vitro maturation and creation of a prototype for a human artificial ovary. Apart of that I have many satellite scientific interests in the field of human reproduction, but they are part of a bigger conversation.

- You are now under an MSCA ITN mobility grant in Europe. Can you tell us a bit about your professional choices, and what particular circumstances lead you to work in Europe under this grant?

Hashimita: Frankly, I had been actively looking for a suitable PhD position on stem cells. I had been suggested by a friend to look up positions on the EURAXESS platform. And that’s how one day I came across the advert of REP-BIOTECH. I applied for it, and participated in 3 interviews before finally being selected for the Project #13 of the programme.

Dmitry: I am a researcher and embryologist with clinical experience in human assisted reproductive technologies since 2013. During these years I was always deeply interested in all aspects of human reproduction and at one point I decided that I would like to go beyond clinical practice and try to improve treatment procedures for infertile couples with difficult diagnosis. Thanks to the Rep-Biotech project I got involved in academical research in the field and got to know many brilliant researchers from all over Europe.

http://ec.europa.eu/euraxess
- **Were there specific hurdles that you managed to overcome in order to secure the position?**

Hashimita: There weren’t exactly any such big hurdles, just the basic routine of recruitment. I had to prove myself as an eager budding scientist, who is ready to take up the challenge of working on a 3-year project.

Dmitry: As the project to which I applied was very relevant to my previous experience, I did not perceive any hurdles during the selection process.

- **How and why was taken the decision to come for a few months to Japan as part of the PhD? What was the main objective of your research stay here?**

Hashimita: At the very beginning of the PhD it had been decided that I would be working for a few months at Okayama University as part of the ITN-funded secondments. With the progress of time and the status of experiments, it was determined that I would be working at there for 2 months, in April and May 2018. We decided to translate our experimental work into another species, and that would be a great opportunity to create a positive collaboration between my home institute and Okayama University. This and also gave me an opportunity to understand the scientific ecosystem of Japan.

Dmitry: In the field of assisted reproductive technologies Japan merits special recognition for investigations in many areas. One of such is the cryopreservation of cells and tissues by the technique called vitrification. Thanks to the secondment in Japan I got an opportunity to learn deeper aspects of vitrification from world famous scientists and performed series of experiments on human oocytes, which we matured in-vitro - it was quite a great scientific experience and I took many interesting ideas back home.

- **How would you say research environment compare between the different countries you worked in and Japan?**

Hashimita: Every country has its own working culture. Since prior to working in Japan I had worked in other countries; hence being well adaptable, I quite enjoyed the work culture in Japan. The research environment is very progressive and researchers are always ready to explore new topics.

Dmitry: From personal experience I would say that Japan certainly has quite different research environment compared to Europe. It has special cultural and traditional aspects which shape communications between people and work habits in a different manner. It was fascinating to learn about work and life culture in Japan and I enjoyed my stay there.
- Now that the grant is almost coming to term, what would you say was its impact on your career?

Hashimita: The opportunity to work in different countries, create a big network, learn more about the research environments of different countries. Learn the local language and the culture. And more over, get a chance to do quality science and travel at the same time. Thanks to this exchange with Okadai, I can speak a little bit of Japanese too.

Dmitry: In our project we have a wide network between different institutions in European countries and beyond. Thanks to that, we became involved in activities of great research laboratories. In my project I stayed at the facility of one of the world leading institutions in the field of fertility preservation, which had enormous positive impact on my future career. During such fruitful collaboration we obtained valuable results regarding unknown aspects of female infertility and presented them at leading conferences and in trending journals. So I cannot be happier about taking part in this project and I look forward to continue my career in the same field as I am involved in now.

- A final, more personal question: how do you envisage your career and where?

Hashimita: I still don’t have any such concrete plans, since my priority is to graduate. But I would like to continue to do research work. As for the country, its yet to be decided!!!

Dmitry: As of previous question, thanks to the collaboration with the top institution in the filed of my research I got quite a few offers to continue my career as a post-doctoral researcher in Italy (my host country) and in other EU countries. By the way, when I stayed in Japan I got an offer to work as an embryologist in the city where I stayed, which was just great, although unfortunately relocating to Japan seemed a bit unexpected for me. In the end, I think I will continue research in the field of fertility preservation in Europe.

Thank you all for your time and wishing you the best for your future projects!
European Research Nights #5: Research Collaboration A to Z, 22 April

The ERNs are back! In 2019, each edition will be co-organised with associations of European researchers in Japan. The first edition is a joint effort with the Association of Italian Researchers in Japan, and will take place on 22 April from 19:00 at Pivotal Labs Tokyo. Its focus is collaborative research at the national, international scale but also academia-private sector. 4 distinguished speakers will provide the audience with experience feedback through a talks and panel discussion session.

Researchers from all nationalities, career levels and disciplines welcome! Bring your food and drinks! More info at bit.ly/ERN2019Japan

Advance your career with a full week of events from 10 June to 13 June

This year we propose a week full of events, packed with grant writing trainings, science communication workshops, a science communication contest and an interactive, informal roleplay workshop on the topic of research evaluation. Check our programme right here!

European Research Nights #6: You the researcher, the evaluator, the decision-maker, 10 June

This year’s second ERN edition will be jointly organised with ACEJapon, the association of Spanish researchers in Japan, on 10 June at the Embassy of Spain, Tokyo. This time, the event will be proposing an original structure, with two role-play sessions where researchers will need to think as proposal evaluators, then as R&I programme makers, with the help and input of an expert evaluator from Spain, Jesus Rojo Gonzalez (Fundacion Madri+d).

Info & registration: bit.ly/ERN2019Japan
Grants In Practice 2019, 11-12 June

Your annual grant writing workshop is back! This year, the GIP event will take place over two days, with an ERC grant training on 11 June and an MSCA-IF grant training on 12 June, both hosted by the Delegation of the EU to Japan.

Register early to get your seat!
More info at bit.ly/GIP2019Japan

Scientific Communication In Practice 2019, 13 June

In complement to the Grants In Practice training, we decided this year to provide you with an opportunity to improve your skills as a science communicator as well! This new event, Scientific Communication In Practice 2019, is jointly organised with WPI ELSI, Tokyo Tech which also hosts all three workshops on 13 June. Seats are limited for this event, register early if possible (the organisation committee will operate a selection if capacity is reached).

More info: bit.ly/SCIP2019Japan

Falling Walls Lab Tokyo, 13 June

Falling Walls Labs take place on a global scale, with researchers and scientists from all disciplines present their current breakthrough research in an effort to answer the question: “Which are the next walls to fall?” .

The Falling Walls Lab Tokyo is organised in 2019 for the fourth time by the German Centre for Research and Innovation Tokyo (DWIH Tokyo) and EURAXESS Japan and will take place on 13 June 2019 from 18:30 at WPI ELSI, Tokyo Tech. Students and researchers can apply via the call for abstracts.
until 13 May. Selected individuals will be invited to Tokyo for the event, travel and accommodation fees covered.

The winner of the Tokyo Lab gets to travel to Berlin on 8-9 November and compete in the Falling Walls Lab Finale.

Further information & registration: bit.ly/FWLT2019EU